3.277 \(\int \frac{\sqrt{\cos (c+d x)}}{\sqrt{a-a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=107 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}}\right )}{\sqrt{a} d}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}}\right )}{\sqrt{a} d} \]

[Out]

(2*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]])])/(Sqrt[a]*d) - (Sqrt[2]*ArcTa
nh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]])])/(Sqrt[a]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.180415, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {2777, 2775, 207, 2782, 208} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}}\right )}{\sqrt{a} d}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]/Sqrt[a - a*Cos[c + d*x]],x]

[Out]

(2*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]])])/(Sqrt[a]*d) - (Sqrt[2]*ArcTa
nh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]])])/(Sqrt[a]*d)

Rule 2777

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
d/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/(Sqrt[a + b*Sin
[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2775

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*b)/f, Subst[Int[1/(b + d*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)}}{\sqrt{a-a \cos (c+d x)}} \, dx &=-\frac{\int \frac{\sqrt{a-a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{a}+\int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}} \, dx\\ &=-\frac{2 \operatorname{Subst}\left (\int \frac{1}{-a+x^2} \, dx,x,\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}}\right )}{d}-\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{2 a^2-a x^2} \, dx,x,\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}}\right )}{d}\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}}\right )}{\sqrt{a} d}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a-a \cos (c+d x)}}\right )}{\sqrt{a} d}\\ \end{align*}

Mathematica [C]  time = 0.374269, size = 161, normalized size = 1.5 \[ -\frac{i \left (-1+e^{i (c+d x)}\right ) \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (\sinh ^{-1}\left (e^{i (c+d x)}\right )-\sqrt{2} \tanh ^{-1}\left (\frac{1+e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )+\tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )\right )}{\sqrt{2} d \sqrt{1+e^{2 i (c+d x)}} \sqrt{a-a \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]/Sqrt[a - a*Cos[c + d*x]],x]

[Out]

((-I)*(-1 + E^(I*(c + d*x)))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(ArcSinh[E^(I*(c + d*x))] - Sqrt[
2]*ArcTanh[(1 + E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] + ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x
))]]))/(Sqrt[2]*d*Sqrt[1 + E^((2*I)*(c + d*x))]*Sqrt[a - a*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.262, size = 116, normalized size = 1.1 \begin{align*}{\frac{\sqrt{2} \left ( -1+\cos \left ( dx+c \right ) \right ) }{d\sin \left ( dx+c \right ) }\sqrt{\cos \left ( dx+c \right ) } \left ({\it Artanh} \left ({\frac{\sqrt{2}}{2}{\frac{1}{\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}}}} \right ) \sqrt{2}-2\,{\it Artanh} \left ( \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ) \right ){\frac{1}{\sqrt{-2\,a \left ( -1+\cos \left ( dx+c \right ) \right ) }}}{\frac{1}{\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)/(a-cos(d*x+c)*a)^(1/2),x)

[Out]

1/d*2^(1/2)*cos(d*x+c)^(1/2)*(-1+cos(d*x+c))*(arctanh(1/2*2^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*2^(1/2)-2
*arctanh((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)))/(-2*a*(-1+cos(d*x+c)))^(1/2)/sin(d*x+c)/(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a-a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.02515, size = 451, normalized size = 4.21 \begin{align*} \frac{\sqrt{2} \sqrt{a} \log \left (-\frac{\frac{2 \, \sqrt{2} \sqrt{-a \cos \left (d x + c\right ) + a}{\left (\cos \left (d x + c\right ) + 1\right )} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a}} -{\left (3 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{{\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}\right ) + 2 \, \sqrt{a} \log \left (-\frac{2 \, \sqrt{-a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) + 1\right )} \sqrt{\cos \left (d x + c\right )} +{\left (2 \, a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right )}{\sin \left (d x + c\right )}\right )}{2 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a-a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*sqrt(a)*log(-(2*sqrt(2)*sqrt(-a*cos(d*x + c) + a)*(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sqrt(a) -
 (3*cos(d*x + c) + 1)*sin(d*x + c))/((cos(d*x + c) - 1)*sin(d*x + c))) + 2*sqrt(a)*log(-(2*sqrt(-a*cos(d*x + c
) + a)*sqrt(a)*(cos(d*x + c) + 1)*sqrt(cos(d*x + c)) + (2*a*cos(d*x + c) + a)*sin(d*x + c))/sin(d*x + c)))/(a*
d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos{\left (c + d x \right )}}}{\sqrt{- a \left (\cos{\left (c + d x \right )} - 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)/(a-a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(cos(c + d*x))/sqrt(-a*(cos(c + d*x) - 1)), x)

________________________________________________________________________________________

Giac [A]  time = 2.38153, size = 113, normalized size = 1.06 \begin{align*} -\frac{\sqrt{2}{\left (\frac{\sqrt{2} \arctan \left (\frac{\sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a}} - \frac{\arctan \left (\frac{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a}}\right )}{\left | a \right |}}{a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a-a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-sqrt(2)*(sqrt(2)*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/sqrt(-a) - arctan(sqrt(-a*t
an(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/sqrt(-a))*abs(a)/(a*d)